Entorhinal Principal Neurons Mediate Brain-stimulation Treatments for Epilepsy

نویسندگان

  • Zhenghao Xu
  • Yi Wang
  • Bin Chen
  • Cenglin Xu
  • Xiaohua Wu
  • Ying Wang
  • Shihong Zhang
  • Weiwei Hu
  • Shuang Wang
  • Yi Guo
  • Xiangnan Zhang
  • Jianhong Luo
  • Shumin Duan
  • Zhong Chen
چکیده

Brain stimulation is an alternative treatment for epilepsy. However, the neuronal circuits underlying its mechanisms remain obscure. We found that optogenetic activation (1Hz) of entorhinal calcium/calmodulin-dependent protein kinase II α (CaMKIIα)-positive neurons, but not GABAergic neurons, retarded hippocampal epileptogenesis and reduced hippocampal seizure severity, similar to that of entorhinal low-frequency electrical stimulation (LFES). Optogenetic inhibition of entorhinal CaMKIIα-positive neurons blocked the antiepileptic effect of LFES. The channelrhodopsin-2-eYFP labeled entorhinal CaMKIIα-positive neurons primarily targeted the hippocampus, and the activation of these fibers reduced hippocampal seizure severity. By combining extracellular recording and pharmacological methods, we found that activating entorhinal CaMKIIα-positive neurons induced the GABA-mediated inhibition of hippocampal neurons. Optogenetic activation of focal hippocampal GABAergic neurons mimicked this neuronal modulatory effect and reduced hippocampal seizure severity, but the anti-epileptic effect is weaker than that of entorhinal LFES, which may be due to the limited spatial neuronal modulatory effect of focal photo-stimulation. Our results demonstrate a glutamatergic-GABAergic neuronal circuit for LFES treatment of epilepsy, which is mediated by entorhinal principal neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O 20: The Role of Neuroinflammation in Epilepsy: A New Target for Treatment

Despite progress in pharmacological and surgical treatments of epilepsy, little is known about the processes that a healthy brain is rendered epileptic after seizure occurrence. Growing evidence supports the involvement of inflammatory processes, both the adaptive immunity and systemic inflammatory response, in induction of individual seizures as well as in the epileptogenesis. Clinical and exp...

متن کامل

Preferential Neuronal Loss in Layer Ill of the Medial Entorhinal Cortex in Rat Models of Temporal Lobe Epilepsy

We recently described a pronounced neuronal loss in layer Ill of the entorhinal cortex (EC) in patients with intractable temporal lobe epilepsy (Du et al., 1993a). To explore the pathophysiology underlying this distinct neuropathology, we examined the EC in three established rat models of epilepsy using Nissl staining and parvalbumin immunohistochemistry. Adult male rats were either electricall...

متن کامل

Neurostimulation as a Putative Method for Treatment of Drug-Resistant Epilepsy in Patient and Animal Models of Epilepsy

A patient with epilepsy was shown to have neurobiological, psychological, cognitive, and social issues as a result of recurring seizures, which is regarded to be a chronic brain disease.However, despite numerous drug treatments, approximately, 30–40% of all patients are resistant to antiepileptic drugs. Therefore, newer therapeutic modalities are introduced into clinical practice in which invol...

متن کامل

Responses of rat subicular neurons to convergent stimulation of lateral entorhinal cortex and CA1 in vivo.

There has been little electrophysiological examination of the afferent projection from lateral entorhinal cortex to dorsal subiculum. Here we provide evidence that synaptic inputs from lateral entorhinal cortex and CA1 converge onto single dorsal subicular neurons in vivo. Subicular responses to CA1 stimulation consisted of excitation and/or long-duration inhibition. Neurons excited by CA1 acti...

متن کامل

Differential Contribution of Ca2+-Dependent Mechanisms to Hyperexcitability in Layer V Neurons of the Medial Entorhinal Cortex

Temporal lobe epilepsy is characterized by recurrent seizures in one or both temporal lobes of the brain; some in vitro models show that epileptiform discharges initiate in entorhinal layer V neurons and then spread into other areas of the temporal lobe. We previously found that, in the presence of GABAA receptor antagonists, stimulation of afferent fibers, terminating both at proximal and dist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2016